## REVISION HISTORY

<table>
<thead>
<tr>
<th>Name</th>
<th>Date</th>
<th>Version</th>
<th>Summary of changes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stephane JOUANIN</td>
<td>Fe 2017</td>
<td>1.0</td>
<td>Initial Document</td>
</tr>
<tr>
<td>Bob Green</td>
<td>03/09/2019</td>
<td>2.0</td>
<td>Updated information and rebranded</td>
</tr>
</tbody>
</table>

## REVIEW HISTORY

<table>
<thead>
<tr>
<th>Reviewer Name</th>
<th>Doc Version Reviewed</th>
<th>Date Sent for review</th>
<th>Date Review Filed</th>
<th>Approved/Rejected (with Reasons)</th>
</tr>
</thead>
</table>
## CONTENTS

Chapter 1: Introduction .................................................................................................................. 4
Chapter 2: Subject Coverage & Sources ....................................................................................... 6
Chapter 3: Features ....................................................................................................................... 7
  Introduction to Zoological Record ................................................................................................. 7
  Web of Science Access to Zoological Record ............................................................................... 7
  Zoological Record - Sample Record ............................................................................................ 8
  Topic Search ................................................................................................................................ 11
  Special Search Capabilities ......................................................................................................... 12
  Other Search Capabilities ........................................................................................................... 13
  All Database Search .................................................................................................................... 14
  Refine and Analyze Results ........................................................................................................ 15
  Manage References .................................................................................................................... 16

Appendix ......................................................................................................................................... 16
  Content Coverage Additional Details ......................................................................................... 16
CHAPTER 1: INTRODUCTION

The Zoological Record was first published as the Record of Zoological Literature in 1864. Therefore, it is the World’s oldest database of animal biology with an unparalleled breadth and depth of coverage of zoology and animal biology.

It was available only in print until 1978, but eventually we integrated it with Web of Science to provide over 150 years of research information in a consistent digital form.

Since it began, the archive has recorded nearly 1.2 million new species.

Zoological Record is the world’s oldest continuing database. It’s the longest running biological literature service in the world, as far as we know. Long considered the world’s unofficial register of animal names, it covers the research relating to the entire animal kingdom, including living and fossil species.

With 20,000 new animal names recorded each year, Zoological Record plays a massive role in modern science in terms of new species discovery.

Zoological Record provides comprehensive, worldwide coverage of literature pertaining to animal science. A respected source of research in universities, zoos, and museums, it is the world’s oldest database dedicated to animal biology and has long been considered the “unofficial register” of taxonomic names and changes to names.

The process of officially establishing whether or not an organism discovered by researchers in the field is truly a species new to science is similar to patent research: all prior recorded discoveries must be checked in order to verify the novelty of the new item, and once verified, its discovery is documented in the literature. As the authoritative record of taxonomy (Division of the natural sciences which deals with naming, describing and classifying organisms), Zoological Record provides scientists with a way to both conduct the research necessary to establish species novelty, and ensure that their new discoveries are recognized in the global scientific community.

It’s a vital tool for scientists worldwide. We’re very much in the sphere of biodiversity, supporting the work of environmental researchers, including those studying global warming, energy, conservation and systematic zoology. The older material in Zoological Record is highly valuable as a resource for today’s new discoveries.
The main features can be summarized as follows:

- Determine the first appearance of an animal in published literature.
- Follow research in significant fields such as biodiversity, ecology, conservation, and wildlife preservation.
- Track changes in the classification and relationships of organisms.
- Check for new species descriptions.
- Identify potential collaborators with significant citation records.
- Integrate searching, writing, and bibliography creation into one streamlined process.

The main benefits can be summarized as follows:

- Comprehensive Coverage: Covers over 4,500 serials, plus many other sources of information including books, reports, and meetings. Totaling around 4.5M records.
- Integrated access to other Web of Science™ data and tools: Access to Zoological Record means you can simultaneously search all other Web of Science resources your institution subscribes to.
- Insightful Analysis Options: Find hidden trends and patterns, gain insight into emerging fields of research, and identify leading researchers, institutions, and journals with the Analyze Tool.
- Backfile Data to 1864: Track over 150 years of vital data and find the supporting - or refuting - data you need.
- Fully integrated in the “All databases” search allowing to glean additional taxonomic, systematic,… data to complete the offering from other sources.
CHAPTER 2: SUBJECT COVERAGE & SOURCES

Its global coverage includes materials from over 100 countries and 4,500 journals, plus monographs, newsletters and other non-serial publications. Over three quarters of the records are from sources published in Europe, the Middle East, Asia, or Australia, and 60% of the literature covered is unique to the database.

Within the 4,500 International journals, more than 2,100 unique titles will not be found in Web of Science core collection, BIOSIS, or any of our other databases.

Additional sources are provided such as books, conference proceedings, meeting papers, meeting reports, newsletters & reviews.

Every year, 85,000 articles are uploaded in the database and amounts to around 4.5 million articles available electronically from 1864

Zoological Record aims to be comprehensive in its coverage of the systematic and taxonomic zoological literature. All aspects of zoology and animal sciences are covered, including behavior, biodiversity, taxonomy, morphology, and nomenclature.

With the exception of systematic zoology, coverage of the literature is selective: an item is relevant for coverage if it contains material about the biology of an animal, but particular emphasis is given to natural biology and systematics.

Studies on modern humans are normally not included, nor are experimental studies on laboratory or domestic species, unless the systematics, evolution, distribution or biology of the animal in the wild is discussed in detail.

All aspects of Zoology and animal sciences are covered, including:-

Behavior, Biodiversity, Conservation, Ecology, Physiology, Taxonomy, Evolution, Nomenclature, Zoogeography, ...
CHAPTER 3: FEATURES

Introduction to Zoological Record

Some of the unique features of Zoological Record include a Thesaurus for subject descriptors. There are 5 categories in the thesaurus which are:

- Subject, Geographical, Paleontological, Systematic, Taxa Notes.

Alerts and updates are weekly by default.

The Zoological Record database can be accessed on its own or via the “All Database” access of the Web of Science.

Web of Science Access to Zoological Record

Web of Science Account, Personalization and Registration

Zoological Record is part of the Web of ScienceTM platform which can be accessed from anywhere at any time using a Web of Science username and password:

Web of Science

The world’s largest publisher-neutral citation index and research intelligence platform

Registering within the platform will enable the usage of personalized Journal Alerts in order to get the new issue’s table of content via email or to be warned about it in the home page.

A Single Sign-On (SSO) authentication system delivers access to three resources: Web of Science, EndNote online, and Publons. There are many other advantages to logging in to a personal Web of Science account, although some of them need a Web of Science subscription:
- When the user selects a starting application, they start their session in a specific database rather than on the Web of Science All Databases tab.

- It is possible to save searches to the Web of Science server that can later be opened when the user resumes their research.

- Search history alerts can be set up. The alert automatically searches the latest update to the database, and then sends the results by e-mail.

- Citation alerts can also be set up, which notify the user by e-mail whenever an article on the Citation Alerts list has been cited by a new article. This feature requires a subscription to Web of Science Core Collection.

- The user may create and maintain custom journal lists of frequently used titles. Related to this, Table of Contents e-mail alerts can also be set up.

- References can be added to the user’s EndNote online library directly from the Web of Science Core.

Creating a Username and Password

The user visits http://www.webofscience.com from an IP-authenticated computer and registers a new account using an e-mail address. A check is performed to verify whether an account already exists for that address. If one does not exist, there is a prompt to complete the User Registration page. After the username and password entered have been verified, the account becomes active.

Roaming Access

Users can access Web of Science™ from anywhere at any time using a Web of Science username and password. This allows users to get access without going through the library IP address. To protect subscriptions from abuse, the user is required to log in to Web of Science from an IP-authenticated computer or device every 6 months.

Zoological Record - Sample Record

Below is a sample record for an article. Bibliographic fields such as title, author, source, source details and abstract, appear in the upper portion of the record. If available, author identifiers will also be included in the record.

For most records in the database, it is possible to find specialized indexing fields and tables which provide detailed information about the concepts discussed in the article.

Both author names and many of these specialized fields are linked to other records in the database. Clicking any field that appears in blue will retrieve a set of articles written by the selected author or indexed with the selected term. This provides a powerful discovery tool.
The Fields made available for each record are as follows:

- TITLE
- AUTHORS
- SOURCE
- SOURCE DETAILS
- PUBLICATION YEAR
- ABSTRACT
- AUTHORS DETAILS
- ADDRESSES
- EMAIL ADDRESS
- CATEGORIES
- RESEARCH AREAS
- BROAD TERMS
-_DESCRIPTOR DATA
- SUPER TAXA
- SYSTEMATICS
- DOCUMENT INFORMATION

Uptake and effects of different concentrations of spherical polymer microparticles on Artemia franciscana.

By: Peixoto, Diogo; Amorim, Joao; Pinheiro, Carlos; Oliveira-Teles, Luis; Varo, Inmaculada; Rocha, Renato de Medeiros; Vieira, Maria Natividadede

Hide Web of Science ResearcherID and ORCID

<table>
<thead>
<tr>
<th>Author</th>
<th>Web of Science ResearcherID</th>
<th>ORCID Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>teles, luis</td>
<td>P-9548-2019</td>
<td><a href="http://orcid.org/0000-0003-2594-1482">http://orcid.org/0000-0003-2594-1482</a></td>
</tr>
<tr>
<td>Vieira, Natividadede</td>
<td>B-5683-2009</td>
<td><a href="http://orcid.org/0000-0000-1297-6046">http://orcid.org/0000-0000-1297-6046</a></td>
</tr>
<tr>
<td>Amorim, Joao</td>
<td></td>
<td><a href="http://orcid.org/0000-0001-9402-9327">http://orcid.org/0000-0001-9402-9327</a></td>
</tr>
<tr>
<td>Peixoto, Diogo</td>
<td></td>
<td><a href="http://orcid.org/0000-0001-5497-9762">http://orcid.org/0000-0001-5497-9762</a></td>
</tr>
</tbody>
</table>

Ecotoxicology and Environmental Safety

Volume: 176 Pages: 211-218

Published: Jul 30 2019

Document Type: Article

Abstract

Artemia cysts have a huge economic importance for the aquaculture sector due to the fact that they are used as live feed for larviculture. Microplastics (MPs) are common and emergent pollutants in the aquatic environments, with unknown and potential long-term effects on planktonic species such as Anemia spp. When used as live feed, Artemia could transfer contaminants to fish along the food chain, with possible adverse effects on human health through their consumption. This study aims to assess the uptake of different concentrations of spherical polymer microparticles (FRM) (1.5 μm in diameter) and their associated chronic effects on feeding, growth, mortality, and reproductive success from juvenile to adult stage of brine shrimp Artemia franciscana. Individuals were exposed for 48 days to 0.4, 0.8 and 1.6 mg L-1 of FRM. No significant detrimental effects on growth, ingestion and mortality rates of A. franciscana were observed in all tested conditions. However, reproductive success was strongly affected by the increase of MP concentrations. The results of the present study showed that A. franciscana juveniles and adults were able to survive different experimental MP concentrations, but their reproductive success and progeny were significantly impacted by exposure to FRM particles.

Author Information

Address: Peixoto, Diogo; Av Gen Norton de Matos S-N, Matosinhos, P-4450208, Portugal, Portugal.

E-mail Address: dpeixoto@climar.up.pt
The lower part of the document provides additional details on the specialized Zoological Record indexing from the article. Indexers use a controlled vocabulary of terms called the Zoological Record Thesaurus when indexing articles to help standardize terminology across the database.

Related Broad Terms from the Zoological Record Thesaurus are automatically applied to the record based on the controlled terms used elsewhere in the indexing.

In the Descriptors Data table, each entry contains the scientific, Latin name of an animal discussed in the article in the Organism column. Thesaurus terms that provide contextual information about how the animal has been discussed by the authors are applied in the Controlled Term column. Some entries may also include descriptive text in the Subset and Modifier columns to provide additional detail. This example relates to a single organism but for this there are multiple Controlled Terms, three have Sunsets and/or have Modifiers.

The Super Taxa displays a list showing where the animals discussed fall in the taxonomic hierarchy, while the Systematics table contains information documenting related taxonomic changes and nomenclature.

Related, non-Latin names that pertain to these organisms are recorded in the Taxa Notes field.
**Topic Search**

When searching Zoological Record by topic, the database looks for your search terms in the title and abstract fields for records, as well as in all of the specialized indexing fields discussed in the previous slide to provide you with comprehensive search results.

It is always best to search for an Organism by its scientific, or Latin name, to get the most comprehensive results. However, if you do not know the Latin name for an Organism, you can search for the common name, then look at the specialist Organism indexing in the results to find the Latin name. In this example, the search is for information about the tawny owl.

The search retrieved 942 results. Clicking on the first result in the list displays the Zoological Record indexing for the Organism showing that Strix aluco is the scientific name for tawny owl:

![Image of search results](image-url)

Clicking on this blue text brings back all 1,290 records with this Organism name:
Special Search Capabilities

The specialist indexing in Zoological Records provides a wide range of fields that can be used to conduct detailed searches. These fields can be combined in order to reliably discover the relevant references. The fields are as follows:

DE= Descriptors - Controlled and non-controlled terms used to index the source document. Descriptors Data are displayed in a table. Each row of the table contains one or more animal names and related subject index terms.

- The Organism column contains the name(s) of animals discussed in the source document.
- The Controlled Term column contains terms from the Subject, Geographical and Paleontological hierarchies in the Zoological Record Thesaurus.
- The Modifier column contains free-text or non-controlled indexing terms.

TN= Taxa Notes - Controlled terms from the Taxa Notes hierarchy of the Zoological Record Thesaurus. Taxa Notes terms are English vernacular names for broad animal groups for animals discussed in the source document.

ST= Super Taxa - Controlled terms from the Super Taxa hierarchy of the Zoological Record Thesaurus. Super Taxa terms are scientific names displayed to show the taxonomic hierarchy to which animals discussed in the source document belong.

SY= Systematics - Controlled and non-controlled terms relating to animal names, systematics, and taxonomy which are used to index the source document. Systematics Data are displayed in a table. Each row of the table contains one animal name and related index terms. The Hierarchy column contains the appropriate controlled term from the Super Taxa hierarchy of the Zoological Record Thesaurus which relates to the Organism Name. The Organism Name column contains the animal name. The Author/Year column contains the name of the author(s) and year of publication of the animal name. The Controlled Term column contains terms from the Systematics hierarchy of the Zoological Record Subject Thesaurus. The Modifier column contains free-text or non-controlled indexing terms.

BN= Biblio Note

IC= Identifying Codes

BT= Broad Terms - Controlled terms from the Subject, Geographical and Paleontological hierarchies of the Zoological Record Thesaurus. These are broader terms of the controlled terms used to index the source document.
Other Search Capabilities

These are generally available in all our databases and they are as follows:

SU= Research Area

IS= ISSN/ISBN (ISSN: The International Standard Serial Number is a unique eight-digit number that identifies periodical publications such as journals and electronic publications. ISBN: The International Standard Book Number is a unique machine-readable identifier that marks a book unmistakably.)

UT= Accession Number

PMID= PubMed ID

TS= Search term(s) will be searched across the title and abstract fields for records, as well as in all of the specialized indexing fields discussed in the previous slide to provide you with comprehensive search results.

TI= The English-language title of the source article or book chapter. If the title appears within square brackets, it has been translated from another language.

AU= The author(s) of the source document. Author names appear as last name, followed by a first name and/or initials. This field also contains the names of corporate authors. All author names from the source document are provided in records from 1994 to the present. Prior to 1994, up to ten authors are shown, with "et al" in the tenth position. Records of publications with no author(s) will display Anonymous in the Author field. A record of a collection of meeting abstracts will display Abstracts in the Author field.

AI= Author Identifiers

ED= Editor

SO= Publication Name - The title of the book or journal. Source information for journals includes volume, issue, part, supplement, page span, and date, including the year of publication.

AB = Abstract - A brief summary or description of the essential content from the source document.

PY= Year Published

PU= Publisher - The name and address of the book publisher.

AD= Address - The address of the author who should receive communications about the source publication, such as requests for reprints.

SD= Subject Descriptors
All Database Search

Zoological Record is fully integrated in the “All Databases” searching capability. Whenever a reference is found in more than 1 database, specific content sections can be accessed from each responding database in order to enrich the reference.

As in the example below, this record found in the Web of Science Core Collection has been also identified in Biosis, CABI, Biological Abstract, Medline and Zoological Record. Therefore, the reference can be enriched by accessing the corresponding record in Zoological Record database or any of the others it is in:-

This record is from:
Web of Science Core Collection

View Record in Other Databases:
View most recent data (in Current Contents Connect)
View biological data (in BIOSIS Citation Index)
View biological data (in BIOSIS Previews)
View biological data (in Biological Abstracts)
View taxonomic data (in Zoological Record)
View medical data (in MEDLINE ®)
View bioscience data (in CABI)

Taxonomic Data:

<table>
<thead>
<tr>
<th>SUPER TAXA</th>
<th>TAXA NOTES</th>
<th>Organism Classifier</th>
<th>Organism Name</th>
<th>Variant</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Crustacea, Arthropoda, Invertebrata, Animalia</td>
<td>Animals, Arthropods, Crustaceans, Invertebrates</td>
<td>Branchiopoda [75.102]</td>
<td>Artemia franciscana</td>
<td>brine shrimp</td>
<td>mature, immature; commercial species</td>
</tr>
</tbody>
</table>

Miscellaneous Descriptors: reproductive success, species mortality, ingestion rate, growth factor, spherical polymer microparticle, microparticle toxicity

Zoological data

Biosis data

Medline data

Clarivate Analytics
Refine and Analyze Results

Use Refine to mine your full set of results to find the top 100 Organisms, Document Types, Authors, Sources Titles, Descriptors, Systematic Controlled Terms and Taxa Notes.

Sort Results: Results can be sorted by Publication Date (default), Times Cited or Usage Count, Relevance, First Author and Source Title.

Analyze Results: Like Refine, with Analyze you can mine a set of results. You can output the results to Microsoft® Excel to analyze further or create your own graphs. Analyze Results works with the following fields:

Authors - Group Authors- Descriptors- Document Types - Editors- Languages- Organisms- Publication Years - Research Areas- Sources Titles- Systematic Controlled Terms - Super Taxa
Manage References

Export can be used to Save to Endnote Online/Desktop, or other bibliographic management tools, printed, or e-mailed.

Results can also be added to the temporary Marked List (50,000 records maximum) or saved permanently to a Marked List (if signed in).

References exported to EndNote will display an icon in Web of Science, to identify this.

APPENDIX

Content Coverage Additional Details

The Zoological Record thesaurus is organized around 5 major hierarchies:

- Subject
- Geographical
- Paleontological
- Systematic
- Taxa Notes
Subject hierarchy:

The subject hierarchy contains controlled terms used to index subject concepts in Zoological Record. It is composed of 39 broad hierarchies. Each level of the 39 hierarchies can be “exploded” in order for sub-levels to appear below the main level.

In the “subject” hierarchy, the terms of the first level of the thesaurus are as follows:

Biology
Systematics
Theoretical zoology
Animals and man
Conservation
Economics
Documentation
Techniques
Biometrics
Histology
Cytology
General morphology

Attachment
Whole animal physiology
Colour and luminescence
Biophysics
Biochemistry
Musculature
Skeletal and supporting structures
Integument
Nervous system
Sensory reception
Nutrition
Feeding
Digestive system
Circulatory system
Respiration
Excretion
Endocrinology
Reproduction
Life cycle and development
Genetics
Evolution
Locomotion

Behaviour
Associations
Parasites diseases and disorders
Immunology and repair mechanisms
Ecology
Habitat
Pollution
Abiotic factors
Zoogeography

Geographical hierarchy:
The geographical hierarchy contains controlled terms classified under 2 hierarchies: Land zones and Marine zones. Each level of those 2 hierarchies can be “exploded” in order for sub-levels to appear below the main level.
In the “Geographical” hierarchy, the terms of the first level of the thesaurus are as follows:

<table>
<thead>
<tr>
<th>Land zones</th>
<th>South America</th>
</tr>
</thead>
<tbody>
<tr>
<td>Afrotropical region</td>
<td>Australasia</td>
</tr>
<tr>
<td>Australasian region</td>
<td>Antarctica</td>
</tr>
<tr>
<td>Nearctic region</td>
<td>Oceanic islands</td>
</tr>
<tr>
<td>Neotropical region</td>
<td>Marine zones</td>
</tr>
<tr>
<td>Oriental region</td>
<td>Antarctic Ocean</td>
</tr>
<tr>
<td>Palaeartic region</td>
<td>Arctic Ocean</td>
</tr>
<tr>
<td>Africa</td>
<td>Atlantic Ocean</td>
</tr>
<tr>
<td>Eurasia</td>
<td>Indian Ocean</td>
</tr>
<tr>
<td>North America</td>
<td>Pacific Ocean</td>
</tr>
<tr>
<td>Central America</td>
<td></td>
</tr>
</tbody>
</table>

**Systematic hierarchy:**

The Systematic hierarchy contains the Latin/Scientific terms used to index animal species. It is composed of 35 broad hierarchies. Each level of those 35 hierarchies can be “exploded” in order for sub-levels to appear below the main level.

In the “Systematic” hierarchy, the terms of the first level of the thesaurus are as follows:

<table>
<thead>
<tr>
<th>Protozoa</th>
<th>Conodonta</th>
</tr>
</thead>
<tbody>
<tr>
<td>Porifera</td>
<td>Fossil Miscellanea</td>
</tr>
<tr>
<td>Archaeocyatha</td>
<td>Brachiopoda</td>
</tr>
<tr>
<td>Coelenterata</td>
<td>Bryozoa</td>
</tr>
<tr>
<td>Ctenophora</td>
<td>Entoprocta</td>
</tr>
<tr>
<td>Echinodermata</td>
<td>Mollusca</td>
</tr>
<tr>
<td>Platyhelminthes</td>
<td>Crustacea</td>
</tr>
<tr>
<td>Nematoda</td>
<td>Trilobitomorpha</td>
</tr>
<tr>
<td>Smaller helminth groups</td>
<td>Arachnida</td>
</tr>
<tr>
<td>Annelida</td>
<td>Smaller arthropod groups</td>
</tr>
<tr>
<td>Rotifera</td>
<td>Insecta</td>
</tr>
<tr>
<td>Miscellaneous minor phyla</td>
<td>Smaller protochordate groups</td>
</tr>
</tbody>
</table>
Paleontological hierarchy:

The paleontological hierarchy contains controlled terms classified in the hierarchy Geological time periods. Each level can be “exploded” in order for sub-levels to appear below the main level.

In the “Paleontological” hierarchy, the terms of the highest levels of the thesaurus are as follows:

Geological time periods
- Caenozoic
- Mesozoic
- Palaeozoic
- Precambrian

Taxa Notes hierarchy:

Taxa notes terms are broader animal group names referring to the animal discussed in a source document. These are common/vernacular names rather than Latin/scientific names.

In the “Taxa Notes” hierarchy, the terms of the highest levels of the thesaurus are as follows:

- Invertebrates
- Protozoans
- Sponges
- Coelenterates
- Ctenophores
- Echinoderms
- Platyhelminths
- Nematodes
- Annelids
- Rotifers
- Conodonts

- Brachiopods
- Bryozoans
- Molluscs
- Arthropods
- Crustaceans
- Trilobites
- Chelicerates
- Arachnids
- Myriapods
- Insects
- Beetles
<table>
<thead>
<tr>
<th>Taxonomic Group</th>
<th>Sub-Taxonomic Group</th>
</tr>
</thead>
<tbody>
<tr>
<td>True Flies</td>
<td>Birds</td>
</tr>
<tr>
<td>Lepidopterans</td>
<td>Mammals</td>
</tr>
<tr>
<td>Hymenopterans</td>
<td>Bats</td>
</tr>
<tr>
<td>True Bugs</td>
<td>Carnivores</td>
</tr>
<tr>
<td>Chordates</td>
<td>Cetaceans</td>
</tr>
<tr>
<td>Protochordates</td>
<td>Edentates</td>
</tr>
<tr>
<td>Calcichordates</td>
<td>Elephants</td>
</tr>
<tr>
<td>Hemichordates</td>
<td>Insectivores</td>
</tr>
<tr>
<td>Graptolites</td>
<td>Lagomorphs</td>
</tr>
<tr>
<td>Tunicates</td>
<td>Marsupials</td>
</tr>
<tr>
<td>Cephalochordates</td>
<td>Monotremes</td>
</tr>
<tr>
<td>Vertebrates</td>
<td>Pinnipeds</td>
</tr>
<tr>
<td>Fish</td>
<td>Primates</td>
</tr>
<tr>
<td>Amphibians</td>
<td>Rodents</td>
</tr>
<tr>
<td>Reptiles</td>
<td>Ungulates</td>
</tr>
</tbody>
</table>
Who we are

Clarivate Analytics accelerates the pace of innovation by providing trusted insights and analytics to customers around the world, enabling them to discover, protect and commercialize new ideas faster.

We own and operate a collection of leading subscription-based services focused on scientific and academic research, patent analytics and regulatory standards, pharmaceutical and biotech intelligence, trademark protection, domain brand protection and intellectual property management.

Clarivate Analytics is now an independent company with over 4,000 employees, operating in more than 100 countries and owns well-known brands that include Web of Science, Cortellis, Derwent, EndNote, CompuMark, MarkMonitor and Techstreet, among others.

To learn more, visit: clarivate.com